Ga doping to significantly improve the performance of all-electrochemically fabricated Cu2O-ZnO nanowire solar cells.

نویسندگان

  • Jiale Xie
  • Chunxian Guo
  • Chang Ming Li
چکیده

Cu2O-ZnO nanowire solar cells have the advantages of light weight and high stability while possessing a large active material interface for potentially high power conversion efficiencies. In particular, electrochemically fabricated devices have attracted increasing attention due to their low-cost and simple fabrication process. However, most of them are "partially" electrochemically fabricated by vacuum deposition onto a preexisting ZnO layer. There are a few examples made via all-electrochemical deposition, but the power conversion efficiency (PCE) is too low (0.13%) for practical applications. Herein we use an all-electrochemical approach to directly deposit ZnO NWs onto FTO followed by electrochemical doping with Ga to produce a heterojunction solar cell. The Ga doping greatly improves light utilization while significantly suppressing charge recombination. A 2.5% molar ratio of Ga to ZnO delivers the best performance with a short circuit current density (Jsc) of 3.24 mA cm(-2) and a PCE of 0.25%, which is significantly higher than in the absence of Ga doping. Moreover, the use of electrochemically deposited ZnO powder-buffered Cu2O from a mixed Cu(2+)-ZnO powder solution and oxygen plasma treatment could reduce the density of defect sites in the heterojunction interface to further increase Jsc and PCE to 4.86 mA cm(-2) and 0.34%, respectively, resulting in the highest power conversion efficiency among all-electrochemically fabricated Cu2O-ZnO NW solar cells. This approach offers great potential for a low-cost solution-based process to mass-manufacture high-performance Cu2O-ZnO NW solar cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microstructures and Photovoltaic Properties of Zn(Al)O/Cu2O-Based Solar Cells Prepared by Spin-Coating and Electrodeposition

Copper oxide (Cu2O)-based heterojunction solar cells were fabricated by spin-coating and electrodeposition methods, and photovoltaic properties and microstructures were investigated. Zinc oxide (ZnO) and Cu2O were used as nand p-type semiconductors, respectively, to fabricate photovoltaic devices based on In-doped tin oxide/ZnO/Cu2O/Au heterojunction structures. Short-circuit current and fill f...

متن کامل

Inorganic Solar Cells Based on Electrospun ZnO Nanofibrous Networks and Electrodeposited Cu2O

The nanostructured ZnO/copper oxide (Cu2O) photovoltaic devices based on electrospun ZnO nanofibrous network and electrodeposited Cu2O layer have been fabricated. The effects of the pH value of electrodeposition solution and the Cu2O layer thickness on the photovoltaic performances have been investigated. It is revealed that the pH value influences the morphology and structure of the Cu2O layer...

متن کامل

Improved Heterojunction Quality in Cu2O-based Solar Cells Through the Optimization of Atmospheric Pressure Spatial Atomic Layer Deposited Zn1-xMgxO

Atmospheric pressure spatial atomic layer deposition (AP-SALD) was used to deposit n-type ZnO and Zn1-xMgxO thin films onto p-type thermally oxidized Cu2O substrates outside vacuum at low temperature. The performance of photovoltaic devices featuring atmospherically fabricated ZnO/Cu2O heterojunction was dependent on the conditions of AP-SALD film deposition, namely, the substrate temperature a...

متن کامل

Study the Effect of Silicon Nanowire Length on Characteristics of Silicon Nanowire Based Solar Cells by Using Impedance Spectroscopy

Silicon nanowire (SiNW) arrays were produced by electroless method on polycrystalline Si substrate, in HF/ AgNO3 solution. Although the monocrystalline silicon wafer is commonly utilized as a perfect substrate, polycrystalline silicon as a low cost substrate was used in this work for photovoltaic applications. In order to study the influence of etching time (which affects the SiNWs length) on d...

متن کامل

Epitaxially aligned cuprous oxide nanowires for all-oxide, single-wire solar cells.

As a p-type semiconducting oxide that can absorb visible light, cuprous oxide (Cu2O) is an attractive material for solar energy conversion. This work introduces a high-temperature, vapor-phase synthesis that produces faceted Cu2O nanowires that grow epitaxially along the surface of a lattice-matched, single-crystal MgO substrate. Individual wires were then fabricated into single-wire, all-oxide...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 15 38  شماره 

صفحات  -

تاریخ انتشار 2013